快科技5?日消息,谷歌革命功预构和由Google DeepMind与Isomorphic Labs联合研发的性A型登相互新一代人工智能模型AlphaFold 3,登上了权威科学期刊Nature。上N生命
与现有预测方法相比,成测AlphaFold 3在发现蛋白质与其他分子类型的分结相互作用方面,准确率至少提高?0%,作用对于某些关键的谷歌革命功预构和相互作用类别,准确率甚至翻倍。性A型登相互 研究团队认为,AlphaFold 3将有助于改变我们对生物世界和药物发现的理解,进而开启人工智能细胞生物学的新时代、/p> Isomorphic Labs正与多家制药公司合作,将AlphaFold 3应用于现实世界的药物设计挑战中,旨在为人类最具破坏性的疾病开发新疗法、/p> 此外,Google DeepMind也推出了基于AlphaFold 3的免费平台——AlphaFold Server,供全球科学家进行非商业性研究,进一步预测蛋白质与其他分子的相互作用、/p> AlphaFold 3的强大能力,来自于其新一代的架构和训练(已经涵盖了所有生命分子)。其核心是改进版本的Evoformer模块,这是一种深度学习架构,也是AlphaFold 2取得成功的基础、/p> 尽管AlphaFold 3展现出巨大潜力,但研究团队也指出了其存在的局限性,包括立体化学限制、幻觉影响、预测准确性问题、结构构象限制、缺乏动态信息以及特定目标预测限制等、/p> |